在生命科研领域,常有人说深度学习的基因组学应用好比是“一个盲人在一间黑暗的房子里寻找一顶并不存在的黑色帽子”。言下之意,是遗憾深度学习的基因组学应用并没有给人们带来太多惊喜。不过,近日宾夕法尼亚大学和费城儿童医院教授邢毅团队的一项研究,找到了这样一顶“黑帽子”。
这项发表在《自然—方法》上的论文成果,提出了一种新的计算框架——DARTS(“利用深度学习强化对RNA-seq的可变剪接分析”英文的首字母缩写)。该计算框架首次将深度学习与贝叶斯假设检验结合,用于RNA可变剪接分析。这种结合使得它即使对于测序深度不那么高的样品,也能有效提高RNA-seq定量差异剪接的准确度。
清华大学生命科学学院教授张强锋点评道:“DARTS综合了深度学习和贝叶斯假设检验统计模型的优点,为那些低测序深度的数据提供了更好的做可变剪接分析的手段,拓展了传统RNA-seq可变剪接分析的敏感度和准确度。”
歡迎光臨 比思論壇 (http://184.95.51.85/) | Powered by Discuz! X2.5 |