量子比特是量子计算机的基本信息单元。与常规计算机使用的非0即1的二进制码不同,量子比特可同时以0和1的状态存在。这种不确定性来源于物理学中的量子叠加:一个量子系统能同时存在于多个分离的量子态中。
想要进一步理解量子叠加,就不得不提及著名量子物理学家薛定谔的那只“既死又活”的猫。
薛定谔的猫其实是一个思想实验。它假定一只猫被关在一个密闭房间内,房间里有一瓶装着剧毒气体的玻璃瓶,瓶上方有一个装有放射性原子的盒子。放射性原子有一定概率发生衰变。盒里还有一个机关侦测放射性原子是否发生衰变。若发生了衰变,机关将控制一个锤子砸碎玻璃瓶,释放出毒气,从而使猫死亡。
但有一个问题出现了:假定关猫的盒子不透明且隔音,不打开盒子的话便无法知道猫的死活。如果问猫是死是活,怎么回答?不打开盒子的话只能推断猫可能是死的,也可能是活的。
因此,现在盒子里关着一只“既死且活”的猫。虽然我们在实际生活中并不会遇到这样的“幽灵猫”,但量子比特却存在相似的情况。量子比特可以同时具有两个或两个以上的多重状态(叠加态),这种现象就是量子叠加。
打破叠加态的方法是测量。例如,我们打开盒子后便知道了猫的生死。因为我们得到了确定的结果(非死即活),叠加态便不复存在,物理描述为叠加态坍缩到某一个量子态。这个打开盒子的过程就是测量。
量子计算机的计算过程便涉及通过测量量子比特,使其量子态坍缩为0或1。这就使得量子计算机与我们日常生活中接触的计算机甚至是超级计算机都有着巨大差别。普通计算机每一比特(byte)仅能存储两种可能状态:非0即1。但量子计算机不同。由于量子叠加,每个量子比特理论上可同时存储0或1这两种状态,这使得量子比特拥有比比特更大的信息存储能力。比如,由于2的8次方等于256,故具有8比特的二进制计算机能表示0到255之间的任一个数字。但具有8量子比特的量子计算机可同时表示0到255之间的每个数字。
量子计算机正是通过量子叠加实现同时存储大量信息的功能。因此,它们可以在处理复杂任务时,快速存储大量数据,探索多种可能并选择最有效的解决途径。
歡迎光臨 比思論壇 (http://184.95.51.85/) | Powered by Discuz! X2.5 |